studio designing and installation

Soundproofing is any means of reducing the sound pressure with respect to a specified sound source and receptor. There are several basic approaches to reducing sound: increasing the distance between source and receiver, using noise barriers to reflect or absorb the energy of the sound waves, using damping structures such as sound baffles, or using active antinoise sound generators.

Two distinct soundproofing problems may need to be considered when designing acoustic treatments - to improve the sound within a room (See anechoic chamber), and reduce sound leakage to/from adjacent rooms or outdoors. Acoustic quieting, noise mitigation, and noise control can be used to limit unwanted noise. Soundproofing can suppress unwanted indirect sound waves such as reflections that cause echoes and resonances that cause reverberation. Soundproofing can reduce the transmission of unwanted direct sound waves from the source to an involuntary listener through the use of distance and intervening objects in the sound path,

Recording studios generally consist of three rooms: the studio itself, where the sound for the recording is created (often referred to as the "live room"), the control room, where the sound from the studio is recorded and manipulated, and the machine room, where noisier equipment that may interfere with the recording process is kept. Recording studios are carefully designed around the principles of room acoustics to create a set of spaces with the acoustical properties required for recording sound with precision and accuracy. This will consist of both room treatment (through the use of absorption and diffusion materials on the surfaces of the room, and also consideration of the physical dimensions of the room itself in order to make the room respond to sound in a desired way) and soundproofing (also to provide sonic isolation between the rooms) to prevent sound from leaving the property. A recording studio may include additional rooms, such as a vocal booth - a small room designed for voice recording, as well as one or more extra control rooms.


Analysis of sound and acoustics plays a role in such engineering tasks as product design, production test, machine performance, and process control. For instance, product design can require modification of sound level or noise for compliance with standards from ANSI, IEC, and ISO. The work might also involve design fine-tuning to meet market expectations. Here, examples include tweaking an automobile door latching mechanism to impress a consumer with a satisfying click or modifying an exhaust manifold to change the tone of an engine's rumble. Aircraft designers are also using acoustic instrumentation to reduce the noise generated on takeoff and landing.

udio and acoustic analysis includes: fractional-octave analysis, sound-level measurements, power spectra, frequency response measurements, and transient analysis. Results are viewed on waterfall displays, colormap displays, and octave graphs.